COS

From QB64 Wiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The COS function returns the horizontal component or the cosine of an angle measured in radians.


Syntax

value! = COS(radianAngle!)


Parameters

  • The radianAngle! must be measured in radians.


Description

  • To convert from degrees to radians, multiply degrees * π / 180.
  • COSINE is the horizontal component of a unit vector in the direction theta (θ).
  • COS(x) can be calculated in either SINGLE or DOUBLE precision depending on its argument.
COS(4) = -.6536436 ...... COS(4#) = -.6536436208636119


Examples

Example 1: Converting degree angles to radians for QBasic's trig functions and drawing the line at the angle.

SCREEN 12 PI = 4 * ATN(1) PRINT "PI = 4 * ATN(1) ="; PI PRINT "COS(PI) = "; COS(PI) PRINT "SIN(PI) = "; SIN(PI) DO PRINT INPUT "Enter the degree angle (0 quits): ", DEGREES% RADIANS = DEGREES% * PI / 180 PRINT "RADIANS = DEGREES% * PI / 180 = "; RADIANS PRINT "X = COS(RADIANS) = "; COS(RADIANS) PRINT "Y = SIN(RADIANS) = "; SIN(RADIANS) CIRCLE (400, 240), 2, 12 LINE (400, 240)-(400 + (50 * SIN(RADIANS)), 240 + (50 * COS(RADIANS))), 11 DEGREES% = RADIANS * 180 / PI PRINT "DEGREES% = RADIANS * 180 / PI ="; DEGREES% LOOP UNTIL DEGREES% = 0

PI = 4 * ATN(1) = 3.141593 COS(PI) = -1 SIN(PI) = -8.742278E-08 Enter the degree angle (0 quits): 45 RADIANS = DEGREES% * PI / 180 = .7853982 X = COS(RADIANS) = .7071068 Y = SIN(RADIANS) = .7071068 DEGREES% = RADIANS * 180 / PI = 45

Explanation: When 8.742278E-08(.00000008742278) is returned by SIN or COS the value is essentially zero.


Example 2: Creating 12 analog clock hour points using CIRCLEs and PAINT

PI2 = 8 * ATN(1) '2 * π arc! = PI2 / 12 'arc interval between hour circles SCREEN 12 FOR t! = 0 TO PI2 STEP arc! cx% = CINT(COS(t!) * 70) ' pixel columns (circular radius = 70) cy% = CINT(SIN(t!) * 70) ' pixel rows CIRCLE (cx% + 320, cy% + 240), 3, 12 PAINT STEP(0, 0), 9, 12 NEXT

Code by Ted Weissgerber

Explanation: The 12 circles are placed at radian angles that are 1/12 of 6.28318 or .523598 radians apart.


Example 3: Creating a rotating spiral with COS and SIN.

SCREEN _NEWIMAGE(640, 480, 32) DO LINE (0, 0)-(640, 480), _RGB(0, 0, 0), BF j = j + 1 PSET (320, 240) FOR i = 0 TO 100 STEP .1 LINE -(.05 * i * i * COS(j + i) + 320, .05 * i * i * SIN(j + i) + 240) NEXT PSET (320, 240) FOR i = 0 TO 100 STEP .1 LINE -(.05 * i * i * COS(j + i + 10) + 320, .05 * i * i * SIN(j + i + 10) + 240) NEXT PSET (320, 240) FOR i = 0 TO 100 STEP .1 PAINT (.05 * i * i * COS(j + i + 5) + 320, .05 * i * i * SIN(j + i + 5) + 240) NEXT _DISPLAY _LIMIT 30 LOOP UNTIL INP(&H60) = 1 'escape exit

Code by Ben


See also



Navigation:
Keyword Reference - Alphabetical
Keyword Reference - By Usage
Main Wiki Page